Part Number Hot Search : 
APF1024H 13N10 00500 DG409 MUR160 B4062 RA121 0040C
Product Description
Full Text Search
 

To Download IRFB4410ZPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  hexfet   power mosfet s d g benefits  improved gate, avalanche and dynamic dv/dt ruggedness  fully characterized capacitance and avalanche soa  enhanced body diode dv/dt and di/dt capability  lead-free  rohs compliant, halogen-free applications  high efficiency synchronous rectification in smps  uninterruptible power supply  high speed power switching  hard switched and high frequency circuits d 2 pak irfs4410zpbf to-220ab IRFB4410ZPBF to-262 irfsl4410zpbf s d g s d g s d g d d d gds gate drain source v dss 100v r ds(on) typ. 7.2m max. 9.0m i d (silicon limited) 97a IRFB4410ZPBF irfs4410zpbf irfsl4410zpbf form quantity IRFB4410ZPBF to-220 tube 50 IRFB4410ZPBF irfsl4410zpbf to-262 tube 50 irfsl4410zpbf tube 50 irfs4410zpbf tape and reel left 800 irfs4410ztrlpbf tape and reel right 800 irfs4410ztrrpbf base part number package type standard pack orderable part number irfs4410zpbf d2pak     
  
           
  absolute maximum ratings symbol parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 100c continuous drain current, vgs @ 10v (silicon limited) a i dm pulsed drain current p d @t c = 25c maximum power dissipation w linear derating factor w/c v gs gate-to-source voltage v dv/dt peak diode recovery  v/ns t j operating junction and c t stg storage temperature range soldering temperature, for 10 seconds (1.6mm from case) mounting torque, 6-32 or m3 screw avalanche characteristics e as (thermally limited) single pulse avalanche energy  mj i ar avalanche current a e ar repetitive avalanche energy  mj thermal resistance symbol parameter typ. max. units r  ??? 0.65 r /  ??? 62 r  ??? 40 300 max. 97 69 390 242 see fig. 14, 15, 22a, 22b, 230 16 -55 to + 175 20 1.5 10lb  in (1.1n  m)
    
  
           
  
  
  
    repetitive rating; pulse width limited by max. junction temperature.   limited by t jmax , starting t j = 25c, l = 0.143mh r g = 25 , i as = 58a, v gs =10v. part not recommended for use above this value.  i sd 58a, di/dt 610a/ s, v dd v (br)dss , t j 175c.   pulse width 400 s; duty cycle 2%. s d g   c oss eff. (tr) is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  c oss eff. (er) is a fixed capacitance that gives the same energy as c oss while v ds is rising from 0 to 80% v dss .  when mounted on 1" square pcb (fr-4 or g-10 material). for recom mended footprint and soldering techniques refer to application note #an-994.   
    
  static @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 100 ??? ??? v / / a ??? ??? 250 i gss gate-to-source forward leakage ??? ??? 100 na gate-to-source reverse leakage ??? ??? -100 r g internal gate resistance ??? 0.70 ??? dynamic @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units gfs forward transconductance 140 ??? ??? s q g total gate charge ??? 83 120 nc q gs gate-to-source charge ??? 19 ??? q gd gate-to-drain ("miller") charge ??? 27 q sync total gate charge sync. (q g - q gd ) ??? 56 ??? t d(on) turn-on delay time ??? 16 ??? ns t r rise time ??? 52 ??? t d(off) turn-off delay time ??? 43 ??? t f fall time ??? 57 ??? c iss input capacitance ??? 4820 ??? pf c oss output capacitance ??? 340 ??? c rss reverse transfer capacitance ??? 170 ??? c oss eff. (er) effective output capacitance (energy related)  ??? 420 ??? c oss eff. (tr) effective output capacitance (time related)  ??? 690 ??? diode characteristics symbol parameter min. typ. max. units i s continuous source current ??? ??? 97 a (body diode) i sm pulsed source current ??? ??? 390 a (body diode)  v sd diode forward voltage ??? ??? 1.3 v t rr reverse recovery time ??? 38 57 ns t j = 25c v r = 85v, ??? 46 69 t j = 125c i f = 58a q rr reverse recovery charge ??? 53 80 nc t j = 25c di/dt = 100a/ s  ??? 82 120 t j = 125c i rrm reverse recovery current ??? 2.5 ??? a t j = 25c t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) i d = 58a r g =2.7  v dd = 65v i d = 58a, v ds =0v, v gs = 10v  t j = 25c, i s = 58a, v gs = 0v  integral reverse p-n junction diode. conditions v gs = 0v, i d = 250 a reference to 25c, i d = 5ma  v gs = 10v, i d = 58a  v ds = v gs , i d = 150 a v ds = 100v, v gs = 0v v ds = 80v, v gs = 0v, t j = 125c mosfet symbol showing the v ds =50v conditions v gs = 10v  v gs = 0v v ds = 50v ? = 1.0mhz, see fig.5 v gs = 0v, v ds = 0v to 80v , see fig.11 v gs = 0v, v ds = 0v to 80v  conditions v ds = 10v, i d = 58a i d = 58a v gs = 20v v gs = -20v
    
  
           
  
  
  
 fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 6.0v 5.5v 5.0v 4.8v bottom 4.5v 60 s pulse width tj = 25c 4.5v 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 4.5v 60 s pulse width tj = 175c vgs top 15v 10v 8.0v 6.0v 5.5v 5.0v 4.8v bottom 4.5v 0 20406080100 q g , total gate charge (nc) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 80v v ds = 40v v ds = 20v i d = 58a 2 3 4 5 6 7 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 175c v ds = 50v 60 s pulse width -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 2.5 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 58a v gs = 10v 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss
    
  
           
  
  
  
 fig 8. maximum safe operating area fig 10. drain-to-source breakdown voltage fig 7. typical source-drain diode forward voltage fig 11. typical c oss stored energy fig 9. maximum drain current vs. case temperature fig 12. maximum avalanche energy vs. draincurrent -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , temperature ( c ) 90 95 100 105 110 115 120 125 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e ( v ) id = 5ma -10 0 10 20 30 40 50 60 70 80 90 100 v ds, drain-to-source voltage (v) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 e n e r g y ( j ) 0.0 0.5 1.0 1.5 2.0 2.5 v sd , source-to-drain voltage (v) 0.1 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 0 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) operation in this area limited by r ds (on) tc = 25c tj = 175c single pulse 100 sec 1msec 10msec dc 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 500 600 700 800 900 1000 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 6.4a 9.4a bottom 58a 25 50 75 100 125 150 t c , case temperature (c) 0 20 40 60 80 100 i d , d r a i n c u r r e n t ( a )
    
  
           
  
  
  
 fig 13. maximum effective transient thermal impedance, junction-to-case fig 14. typical avalanche current vs.pulsewidth fig 15. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 14, 15: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 16a, 16b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 14, 15). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figures 13) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 t h e r m a l r e s p o n s e ( z t h j c ) c / w 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc j j 1 1 2 2 r 1 r 1 r 2 r 2 c ci i / ri ci= i / ri ri (c/w) i (sec) 0.237 0.000178 0.413 0.003772 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 50 100 150 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1.0% duty cycle i d = 58a 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav, assuming ? j = 25c and tstart = 150c. 0.01 allowed avalanche current vs avalanche pulsewidth, tav, assuming tj = 150c and tstart =25c (single pulse)
 !   
  
           
  
  
  
  "#$% 
&$'&  ( fig 16. threshold voltage vs. temperature  "#$% 
')&  ( 
"#$% 
&$'&  (  "#$% 
')&  ( -75 -50 -25 0 25 50 75 100 125 150 175 200 t j , temperature ( c ) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 v g s ( t h ) , g a t e t h r e s h o l d v o l t a g e ( v ) i d = 150 a i d = 250 a i d = 1.0ma i d = 1.0a 100 200 300 400 500 600 700 di f /dt (a/ s) 0 50 100 150 200 250 300 350 400 450 q r r ( n c ) i f = 58a v r = 85v t j = 25c _____ t j = 125c ---------- 100 200 300 400 500 600 700 di f /dt (a/ s) 0 50 100 150 200 250 300 350 400 q r r ( n c ) i f = 39a v r = 85v t j = 25c _____ t j = 125c ---------- 100 200 300 400 500 600 700 di f /dt (a/ s) 0 5 10 15 20 i r r m ( a ) i f = 58a v r = 85v t j = 25c _____ t j = 125c ---------- 100 200 300 400 500 600 700 di f /dt (a/ s) 0 5 10 15 20 i r r m ( a ) i f = 39a v r = 85v t j = 25c _____ t j = 125c ----------
 *   
  
           
  
  
  
 fig 23a. switching time test circuit fig 23b. switching time waveforms fig 22b. unclamped inductive waveforms fig 22a. unclamped inductive test circuit fig 24a. gate charge test circuit fig 24b. gate charge waveform fig 21. +

&$&(#'  for n-channel hexfet   power mosfets  
     ? 
     ?     ?

         p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period ,   
  , + - + + + - - -        ?      !  ?   " #$## ?        %  && ? #$##'$

   1k vcc dut 0 l s 20k vds vgs id vgs(th) qgs1 qgs2 qgd qgodr r g i as 0.01 t p d.u.t l v ds + - v dd driver a 15v 20v t p v (br)dss i as v gs v dd v ds l d d.u.t + - second pulse width < 1 s duty factor < 0.1% v gs v ds 90% 10% t d(on) t d(off) t r t f
 -   
  
           
  
  
  
 
   
      to-220ab packages are not recommended for surface mount application.  
         
     fb4410z fb4410z pyww? lc lc part number date code p = lead-free y = last digit of year ww = work week ? = assembly site code international rectifier logo assembly lot code or ywwp lc lc part number date code y = last digit of year ww = work week p = lead-free international rectifier logo assembly lot code
 .   
  
           
  
  
  
  
         
      

  (dimensions are shown in millimeters (inches))  

      irfs4410z fs4410z pyww? ywwp assembly lot code international rectifier logo date code p = lead-free y = last digit of year ww = work week ? = assembly site code lc lc part number or assembly lot code international rectifier logo date code y = last digit of year ww = work week p = lead-free lc lc part number
    
  
           
  
  
  
 to-262 part marking information to-262 package outline (dimensions are shown in millimeters (inches))  
         
     fsl4410z pyww? fsl4410z ywwp assembly lot code international rectifier logo date code p = lead-free y = last digit of year ww = work week ? = assembly site code part number or date code y = last digit of year ww = work week p = lead-free lc lc assembly lot code international rectifier logo part number lc lc
    
  
           
  
  
  
  
      3 4 4 trr feed direction 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) trl feed direction 10.90 (.429) 10.70 (.421) 16.10 (.634) 15.90 (.626) 1.75 (.069) 1.25 (.049) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 4.72 (.136) 4.52 (.178) 24.30 (.957) 23.90 (.941) 0.368 (.0145) 0.342 (.0135) 1.60 (.063) 1.50 (.059) 13.50 (.532) 12.80 (.504) 330.00 (14.173) max. 27.40 (1.079) 23.90 (.941) 60.00 (2.362) min. 30.40 (1.197) max. 26.40 (1.039) 24.40 (.961) notes : 1. comforms to eia-418. 2. controlling dimension: millimeter. 3. dimension measured @ hub. 4. includes flange distortion @ outer edge.  
         
    
    
  
           
  
  
  
 to- 220 n/a d2pak to- 262 rohs c ompliant qualification information ? industrial (per jedec jesd47f ?? guidelines) yes qualification level moisture sensitivity level ms l 1 / 0 
 

 12 %2((
(%
 "
($( //3%% &

455' 
%
  ir world headquarters: 101 n. sepulveda blvd., el segundo, california 90245, usa to contact international rectifier, please visit http://www.irf.com/whoto-call/ revision history date comment ? updated data sheet with new ir corporate template. ? updated package outline & part marking on page 8, 9 & 10. ? added bullet point in the benefits "rohs compliant, halogen -free" on page 1. 4/25/2014


▲Up To Search▲   

 
Price & Availability of IRFB4410ZPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X